If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+40n=0
a = 3; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·3·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*3}=\frac{-80}{6} =-13+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*3}=\frac{0}{6} =0 $
| 56x=3136 | | 12+5a=2 | | 2(x+4)=1/2(4x-4 | | 3(2x-4)=3x+5 | | 0=-5x^2+6x-7 | | x+107+38=180 | | 7(y-9=-14 | | x(2x)=365 | | 3k-k=5 | | 12+6=2(3+6x | | 475000(1.0375)^t=1.000.000 | | -12x+12=-15x+(24) | | -3(5g+1)=+8g | | 500+115n=2.685 | | 12+g=20-2(g) | | 4+3(n)=40+n | | 3/4x-2=8-1/2x | | x/7=17/13 | | 8x+3(23+6x)=9 | | -5=(3m-4) | | 9-((a)/(5))=2a-3 | | 500x-0.16=100x+0.52 | | 180=23x-17+15+7 | | 180=9x-33+4x+7 | | 12-9y=-9 | | v=112/8 | | g=56/14 | | g=56/4 | | 180=5x-28+x+5+2x+11 | | 4.5=10x+6.1 | | 32z=48 | | 3(2x-2.3)=9x-6.9 |